222nm Published Research References

1 222nm Published Research

1.1 Comparison of stratum corneum thickness in children and adults

1.2 Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength

1.3 Comparison of the Disinfection Effects of Vacuum UV (VUV) and UV Light on *Bacillus subtilis* Spores in Aqueous Suspensions at 172, 222 and 254 nm

1.4 207-nm UV Light - A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: *In Vitro* Studies*

1.5 Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems

1.6 207-nm UV Light—A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: *In-Vivo Safety Studies* *

1.7 Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light

© 2021 Acuity Brands Lighting, Inc. All rights reserved. Rev. 6/9/2021
1.8 **Disinfection and healing effects of 222-nm UVC light on methicillin-resistant *Staphylococcus aureus* infection in mouse wounds**

1.9 **Far-UVC light prevents MRSA infection of superficial wounds in vivo**

1.10 **Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases**

1.11 **Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses**

1.12 **Effect of far ultraviolet light emitted from an optical diffuser on methicillin-resistant *Staphylococcus aureus* in vitro**

1.13 **Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague–Dawley rats**

1.14 **DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation**

1.15 Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation

1.16 222-nm UVC inactivates a wide spectrum of microbial pathogens

1.17 Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses

1.18 Predicting airborne coronavirus inactivation by far-UVC in populated rooms using a high-fidelity coupled radiation-CFD model

1.19 Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination

1.20 Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans

1.21 Effect of intermittent irradiation and fluence-response of 222nm ultraviolet light on SARS-CoV-2 contamination

1.22 Exposure of Human Skin Models to KrCl Excimer Lamps: The Impact of Optical Filtering
1.23 Ozone Generation by Ultraviolet Lamps

1.24 A Need to Revise Human Exposure Limits for Ultraviolet UV-C Radiation

1.25 Re-Evaluation of Rat Corneal Damage by Short-Wavelength UV Revealed Extremely Less Hazardous Property of Far-UV-C

1.26 Extreme Exposure to Filtered Far-UVC: A Case Study

* Study is referenced because it includes a discussion of biological safety of far UVC light on mammalian cells and tissues. Inclusion of the study is not intended to make any medical claim regarding the cure, mitigation, treatment, or prevention of disease.

** Study is referenced because it includes a discussion of the characteristics of far-UVC light and its ability to inactivate aerosolized viruses. Inclusion of the study is not intended to make any medical claim regarding the cure, mitigation, treatment, or prevention of disease.

***Study is referenced because it explores KrCl lamp health hazards by comparing filtered and unfiltered KrCl lamps using effective spectral irradiance calculations and experimental skin exposures; the study does not address any intended impact on the structure or function of the body.