222nm Wavelength UV Published Research

Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light

Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength

Comparison of the Disinfection Effects of Vacuum-UV (VUV) and UV Light on Bacillus subtilis Spores in Aqueous Suspensions at 172, 222 and 254 nm

Effect of far ultraviolet light emitted from an optical diffuser on methicillin-resistant *Staphylococcus aureus* in vitro

Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague–Dawley rats

Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses
Narita K, Asano K, Morimoto Y, Igarashi T, Nakane A (2018). Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLOS ONE 13(7): e0201259. https://doi.org/10.1371/journal.pone.0201259

Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems
Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses

222-nm UVC inactivates a wide spectrum of microbial pathogens

Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation

DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation

Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases

Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans

08/20/20